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1 Uniform Convergence

For a subset E ⊆ R, have a sequence fn : E → R. What does it mean for the sequence (fn) to
converge? The most basic notion for any x ∈ E require that the sequence of real numbers fn(x)
to converge in R. If this holds we can defined a new function f : E → R by setting each value to
the limit of the function.

Definition. (Pointwise limit) We say that (fn) converges pointwise if for all x in its
domain we have that

f(x) = lim
n→∞

fn(x)

converges. We write that fn → f pointwise.

Are properties such as continuity, differentiability integrability, preserved in the limit? We’ll use
an example to show that continuity is not preserved.

We can see this by taking a sequence of functions which converge to a step function by taking
tighter and tighter curvers which get steeper and steeper. For example take,

fn : [−1, 1] → R, fn(x) = x
1

2n+1 .

So in the limit we get that

fn(x) → f(x) =


1 0 < x ≤ 1

0 x = 0

−1 −1 ≤ x < 0

which is not continious.

For an example where integability is not preserved, let q1, q2, q3, . . . be an enumeration of Q∩[0, 1]
and define

fn(x) =

{
1 x ∈ {q1, . . . , qn}
0 otherwise

so we get fn(x) continious everywhere on [0, 1] apart from a finite number of points, then fn is
integrable on [0, 1] (IA Analysis I). But,

lim
n→∞

fn(x) = 1Q(x)

which we know is not integrable.

If fn → f pointwise, fn integrable, f integrable, does it follow that
∫
fn →

∫
f? (Spoiler: No)

For example take fn to be a ’spike’ with height n and width 2
n , concretely,

fn(x) =


n2x 0 ≤ x ≤ 1

n

n2( 2n − x) 1
n ≤ x ≤ 2

n

0 otherwise

So the integral of fn over [0, 1] is 1, but we can see that fn converges pointwise to zero. So∫ 1

0
fn → 1 but

∫ 1

0
f → 0.

So we need a better (stronger) notion for the convergence of a sequence of functions. We can’t
use something too strong, such as fn → f if fn is eventually f for large enough n. We’ve got to
find something inbetween. This is uniform convergence.
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Definition. (Uniform convergence) Let fn, f : E → R, for n ∈ N. We say that (fn)
converges uniformly on E if the following holds. For all ε > 0, ∃N = N(ε) such that for
every n ≥ N and for every x ∈ E we have that |fn(x)− f(x)| < ε.

Remark. This statement is equivalent to the following,

∀ε > 0,∃N = N(ε), s.t. ∀n ≥ N, sup
x∈E

|fn(x)− f(x)| < ε.

Comparing this to pointwise convergence, ∀x ∈ E and ∀ε > 0, ∃N = N(ε, x) such that n ≥
N =⇒ |fn(x) − f(x)| < ε. So we can change our N value for each individual x. However we
can’t in uniform convergence, which makes this is stronger statement.

Hence we see Uniform convergence =⇒ Pointwise convergence. This gives a nice way to com-
pute uniform limits. If a function doesn’t converge pointwise then we know it doesn’t converge
uniformly. If we know a sequence of functions converges pointwise to some limit function, then
this function must be the limit of the uniform limit, if it exists.

Definition. (Uniformly Cauchy) Let fn : E → R be a sequence of functions. We say that
(fn) is uniformly Cauchy on E if

∀ε > 0,∃N = N(ε) s.t. n,m ≥ N =⇒ sup
x∈E

|fn(x)− fm(x)| < ε.

Theorem. (Cauchy criterion for uniform convergence) Let (fn) be a sequence of functions
with fn : E → R. The (fn) converges uniformly on E if and only if (fn) is uniformly
Cauchy on E.

Proof. Suppose that (fn) is a sequence converging uniformly in E to some function f . Given
some ε > 0, there is a N such that supx∈E |fn(x) − f(x)| < ε for all n ≥ N . By the triangle
inequality ∀x ∈ E, picking n,m ≥ N ,

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |fm(x)− f(x)|
≤ sup

E
|fn − f |+ sup

E
|fm − f |

< ε+ ε

< 2ε

hence (fn) is uniformly Cauchy.
For the converse, suppose that (fn) is a sequence uniformly Cauchy in E. Then the sequence of
real numbers (fn(x)) is Cauchy so by IA Analysis I, this sequence has a limit, call it f(x). So
(fn) converges pointwise to f . Now we check that fn → f uniformly on E. Pick any ε > 0 and
note that by the hypothesis that (fn) is uniformly Cauchy, there exists a number N such that
for all n,m ≥ N we have |fn(x)− fm(x)| < ε. Fix n ≥ N and let m → ∞ in this. So since fm(x)
converges to f(x) pointwise, we get that

|fn(x)− f(x)| ≤ ε

hence (fn) converges uniformly in E.
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For an example consider fn : R → R defined by fn(x) = x
n . So fn → 0 pointwise on R. But

|fn − 0| is unbounded so the suprenum doesn’t exist so fn does not converge uniformly on R.
However if we restrict the domain of fn to [−a, a] then we get uniform convergence.

Theorem. (Continuity is preserved under uniform limits) Let fn, f : [a, b] → R. Suppose
that (fn) converges to f uniformly on [a, b]. If x ∈ [a, b] is such that fn is continuous at
x for all n ∈ N, then f is continuous at x.

Proof. Let ε > 0 by uniform convergence of fn → f we have some N ∈ N such that for all n ≥ N ,

sup
y∈[a,b]

|fn(y)− f(y)| < ε

. By continuity of fN at x we have δ = δ(N, x, ε) > 0 s.t. y ∈ [a, b], |x − y| < δ =⇒ |fN (y) −
fN (x)| < ε.
Then y ∈ [a, b], |x− y| < δ we ] have

|f(y)− f(x)| ≤ |f(y)− fN (y)|+ |fN (y)− fN (x)|+ |fN (x)− f(x)|
< ε+ ε+ ε

< 3ε

Hence f is continuous at x.

It is instructive to see where this proof goes wrong if we only assume that (fn) converges to f
pointwise.

Corollary. (Uniform limits of continuous functions are continuous) If fn, f : [a, b] → R,
and fn → f uniformly on [a, b] and if fn is continuous on [a, b] for every n then f is
continuous on [a, b].

Proof. Immediate from the previous theorem.

From now on we will denote C([a, b]) = {f : [a, b] → R : f is continuous on [a, b]}.

Theorem. Let (fn) be a uniformly Cauchy sequence of functions in C([a, b]) the it
converges to a function in C([a, b]).

Proof. Trivial from our theorems earlier proved.

Theorem. (Uniform convergence implies convergence of integrals) For fn, f : [a, b] → R
be such that fn, f are bounded and integrable on [a, b]. If fn → f uniformly on [a, b] then∫ b

a

fn(x)dx →
∫ b

a

f(x)dx

Remark. The assumption that f is integrable is redundant. We will see later that integrability
of fn implies that f is integrable if fn → f uniformly
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Proof. ∣∣∣∣∣
∫ b

a

fn(x)dx−
∫ b

a

f(x)dx| =

∣∣∣∣∣
∫ b

a

fn(x)− f(x)dx

≤
∫ b

a

|fn(x)− f(x)|dx

≤ sup
x∈[a,b]

|fn(x)− f(x)|(b− a) → 0

by assumption.

1.1 Differentation and uniform convergence

This is more subtle if fn → f uniformly on some interval and if fn are differentiable it does not
follow that

(i) That f is differentiable.

(ii) Even if f is differentiable that f ′
n(x) → f(x).

We can view this in the example of fn : [−1, 1] → R with fn(x) = |x|1+ 1
n . Hence we have that

lim
x→0

fn(x)− fn(0)

x
= lim

x→0
sgn(x

1
n ) = 0

So fn is differentialbe at 0 with fn(0) = 0 and clearly fn is differentiable everywhere where x = 0
too. We can check that fn → |x| uniformly. But |x| is not differentiable at x = 0.

Now consider the example fn : R → R with

fn(x) =
sin(nx)√

n
.

So fn → 0 uniformly on R. So we have a differentiable limit but f ′
n(x) =

√
n cos(nx) which is

not convergent as n → ∞. So we don’t have f ′
n(x) → f ′(x) pointwise on R.

Theorem. Let fn : [a, b] → R be a sequence of differentiable functions (at the end points
this means that the one-sided derivative exists). Suppose that:

(i) f ′
n → g uniformly for some function g : [a, b] → R.

(ii) For some c ∈ [a, b] the sequence (fn(c)) converges.

Then (fn) converges uniformly to some function f : [a, b] → R where f is differentiable
everywhere on [a, b] and f ′(x) = g(x) for all x ∈ [a, b].

This proves that (
lim
n→∞

fn

)′
= lim

n→∞
f ′
n

i.e. we can exchange the derivative and limit in this case.

Remark. If we assume that f ′
n are continuous, then the proof is more straightforward and can

be based on the fundamental theorem of calculus.
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Proof. By the mean value theorem applied to the difference (fn − fm) we have that for any
x ∈ [a, b]

fn(x)− fm(x) = fn(c)− fm(c) + (x− c)(fn − fm)′(xn,m)

=⇒ |fn(x)− fm(x)| ≤ |fn(c)− fm(c)|+ (b− a)|f ′
n(xn,m)− f ′

m(xn,m)|
=⇒ sup |fn − fm| < |fn(c)− fm(c)|+ (b− a) sup |f ′

n − f ′
m| → 0

as n → ∞. So (fn) is uniformly Cauchy and hence there is an f : [a, b] → R s.t. fn → f uniformly.

For the next part fix some y ∈ [a, b]. Define

h(x) =

{
f(x)−f(y)

x−y x ̸= y

g(y) x = y

Now we only have to estabilish that h is continuous at y to show that f is differentiable at y
with f ′(y) = g(y). Let

hn(x) =

{
fn(x)−fn(y)

x−y x ̸= y

f ′
n(y) x = y

then since fn is differentiable at y we see that hn is continuous on [a, b]. The pointwise limit of
(hn) is h almost by definition since f ′

n → g at x = y. Since the uniform limit of sequence of
continuous functions is continuous, we just need to show that (hn) is uniformly Cauchy on [a, b]
since the limit must be h since it converges pointwise to h.

hn(x)− hm(x) =

{
(fn−fm)(x)−(fn−fm)(y)

x−y x ̸= y

(f ′
n − f ′

m)(y) x = y
.

By the mean value theorem,

hn(x)− hm(x) =

{
(fn − fm)′(xn,m) for some xn,m between x and y x ̸= y

(fn − fm)′(y) x = y

sup
[a,b]

|hn − hm| ≤ sup
[a,b]

|f ′
n − f ′

m| → 0

as n,m → ∞. So (hn) is uniformly Cauchy so we’re done.
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