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1 Uniform Convergence

For a subset F C R, have a sequence f, : E — R. What does it mean for the sequence (f,) to
converge? The most basic notion for any x € F require that the sequence of real numbers f,,(x)
to converge in R. If this holds we can defined a new function f : E — R by setting each value to
the limit of the function.

Definition. (Pointwise limit) We say that (f,) converges pointwise if for all z in its
domain we have that

f(z) = lim f,(z)

n—0o0

converges. We write that f,, — f pointwise.

Are properties such as continuity, differentiability integrability, preserved in the limit? We’ll use
an example to show that continuity is not preserved.

We can see this by taking a sequence of functions which converge to a step function by taking
tighter and tighter curvers which get steeper and steeper. For example take,

Fo i [FL1 =R, folz) = xmr.
So in the limit we get that

1 O<x<1
fa(z) = f(z) =40 =0

-1 —-1<z<0
which is not continious.

For an example where integability is not preserved, let g1, ¢2, g3, . . . be an enumeration of QNJ[0, 1]

and define
)1 ze{q,. . qn}
ful@) = {0 otherwise

so we get fn(x) continious everywhere on [0, 1] apart from a finite number of points, then f, is
integrable on [0, 1] (IA Analysis I). But,

lim f,(z) = 1g(x)

n—oo

which we know is not integrable.

If f, — f pointwise, f, integrable, f integrable, does it follow that [ f, — [ f? (Spoiler: No)
For example take f,, to be a ’spike’ with height n and width %, concretely,

n2x 0<er< %
fo(z) = ng(%—m) %S:vg%
0 otherwise

So the integral of f,, over [0,1] is 1, but we can see that f,, converges pointwise to zero. So
1 1
Jo fn—1Dbut [; f—0.

So we need a better (stronger) notion for the convergence of a sequence of functions. We can’t
use something too strong, such as f,, — f if f,, is eventually f for large enough n. We’ve got to
find something inbetween. This is uniform convergence.



Definition. (Uniform convergence) Let f,,f : E — R, for n € N. We say that (f,)
converges uniformly on E if the following holds. For all € > 0, AN = N(e) such that for
every n > N and for every x € E we have that |f,(z) — f(z)] < e.

Remark. This statement is equivalent to the following,

Ve > 0,3IN = N(e), s.t. Vn > N, sup | fn(z) — f(2)] <e.
zel

Comparing this to pointwise convergence, Vz € F and Ve > 0, 3N = N(g,x) such that n >
N = |fn(z) — f(z)| < e. So we can change our N value for each individual z. However we
can’t in uniform convergence, which makes this is stronger statement.

Hence we see Uniform convergence = Pointwise convergence. This gives a nice way to com-
pute uniform limits. If a function doesn’t converge pointwise then we know it doesn’t converge
uniformly. If we know a sequence of functions converges pointwise to some limit function, then
this function must be the limit of the uniform limit, if it exists.

Definition. (Uniformly Cauchy) Let f,, : E — R be a sequence of functions. We say that
(fn) is uniformly Cauchy on E if

Ve > 0,dN = N(e) s.t. n,m > N = sup |fn(z) — frm(2)| <e.
zeE

Theorem. (Cauchy criterion for uniform convergence) Let (f,,) be a sequence of functions
with f, : E — R. The (f,) converges uniformly on F if and only if (f,) is uniformly
Cauchy on FE.

Proof. Suppose that (f,) is a sequence converging uniformly in E to some function f. Given
some € > 0, there is a IV such that sup,cp|fn(z) — f(x)| < € for all n > N. By the triangle
inequality Vo € F, picking n,m > N,

|fr(@) = fm (@) < [fu(x) = f(2)] + | fn(2) — f(2)]
< sup | fr = ] +S%p|fm — f

<e+e
< 2e

hence (f,,) is uniformly Cauchy.

For the converse, suppose that (f,,) is a sequence uniformly Cauchy in E. Then the sequence of
real numbers (f,(z)) is Cauchy so by IA Analysis I, this sequence has a limit, call it f(x). So
(fn) converges pointwise to f. Now we check that f,, — f uniformly on E. Pick any € > 0 and
note that by the hypothesis that (f,,) is uniformly Cauchy, there exists a number N such that
for all n,m > N we have |f,(z) — fm(2)| < &. Fix n > N and let m — oo in this. So since f,(x)
converges to f(x) pointwise, we get that

[fn(z) = f(z)] < e

hence (f,,) converges uniformly in E. O



For an example consider f, : R — R defined by f,(z) = £. So f, — 0 pointwise on R. But

.
|fr — 0 is unbounded so the suprenum doesn’t exist so f,, does not converge uniformly on R.
However if we restrict the domain of f,, to [—a, a] then we get uniform convergence.

Theorem. (Continuity is preserved under uniform limits) Let f,, f : [a,b] — R. Suppose
that (f,) converges to f uniformly on [a,b]. If 2 € [a,b] is such that f, is continuous at
x for all n € N, then f is continuous at x.

Proof. Let € > 0 by uniform convergence of f,, — f we have some N € N such that for alln > N,

sup |fn(y) — fly)l <e
y€la,b]

. By continuity of fx at  we have § = §(N,z,e) > 0s.t. y € [a,b], ]z —y| <d = |fn(y) —
fn(z)| <e.
Then y € [a,b], |z — y| < § we | have

|f(y) = f(@)] <[f(y) = In@)] + [In(y) = fn(@)] + [fn(z) = f()]
<et+e+te
< 3¢

Hence f is continuous at z. O

It is instructive to see where this proof goes wrong if we only assume that (f,) converges to f
pointwise.

Corollary. (Uniform limits of continuous functions are continuous) If f,, f : [a,b] = R,
and f,, — f uniformly on [a,b] and if f, is continuous on [a,b] for every n then f is
continuous on [a, b].

Proof. Immediate from the previous theorem. O

From now on we will denote C([a,b]) = {f : [a,b] = R : f is continuous on [a, b]}.

Theorem. Let (f,) be a uniformly Cauchy sequence of functions in C([a,b]) the it
converges to a function in C([a, b]).

Proof. Trivial from our theorems earlier proved. O

Theorem. (Uniform convergence implies convergence of integrals) For f,, f : [a,b] — R
be such that f,, f are bounded and integrable on [a, b]. If f,, — f uniformly on [a, b] then

/ab frn(z)dx — /ab f(z)dz

Remark. The assumption that f is integrable is redundant. We will see later that integrability
of f,, implies that f is integrable if f,, — f uniformly



Proof.

/ab fn(z)dz — /ab f(x)dz| = /ab fol@) = f(z)da

b
< / () — f()]dz

< sup |fu(z) = f(@)|(b—a) =0
z€Ja,b]

by assumption.

1.1 Differentation and uniform convergence

This is more subtle if f,, — f uniformly on some interval and if f,, are differentiable it does not
follow that

(i) That f is differentiable.
(ii) Even if f is differentiable that f/ (z) — f(z).
We can view this in the example of f, : [~1,1] — R with f,(z) = |«|***. Hence we have that

N AGEIAC)

. 1
tn = ) =0

So f, is differentialbe at 0 with f,,(0) = 0 and clearly f, is differentiable everywhere where z = 0
too. We can check that f,, — |z| uniformly. But |z| is not differentiable at x = 0.

Now consider the example f,, : R — R with

sin(nzx)
\/ﬁ

So f, — 0 uniformly on R. So we have a differentiable limit but f}(z) = y/ncos(nz) which is
not convergent as n — co. So we don’t have f/ (x) — f’(z) pointwise on R.

fn(x) =

Theorem. Let f,, : [a,b] — R be a sequence of differentiable functions (at the end points
this means that the one-sided derivative exists). Suppose that:

(i) f], — g uniformly for some function g : [a,b] — R.
(ii) For some c € [a, b] the sequence (f,,(c)) converges.

Then (f,) converges uniformly to some function f : [a,b] — R where f is differentiable
everywhere on [a,b] and f'(z) = g(z) for all z € [a, b].

This proves that
!
(lim fn> = lim f/

n—oo

i.e. we can exchange the derivative and limit in this case.

Remark. If we assume that f/ are continuous, then the proof is more straightforward and can
be based on the fundamental theorem of calculus.



Proof. By the mean value theorem applied to the difference (f, — fn) we have that for any
x € [a, b]

fu(@) = fn(@) = fu(0) = fim(e) + (& = ) (fa — fm) (Tn,m)
= |fu(@) = fn (@) < |fule) = fm ()] + (0 = a)|fr(@nm) — frn(@nm)]
= sup |.fn - fm| < |fn<c) - f7n(c)| + (b - a’) sup |f7/z - f’r/n| -0

asn — 00. So (fy,) is uniformly Cauchy and hence thereis an f : [a,b] — R s.t. f, = f uniformly.

For the next part fix some y € [a, b]. Define

F@)—f(y)
Wa)={ =v ° 7Y
9(y) r=y

Now we only have to estabilish that h is continuous at y to show that f is differentiable at y
with f'(y) = g(y). Let
fn (@)= fn(y)
b (z) = { T—y T#Y

fr(y) T=y

then since f,, is differentiable at y we see that h,, is continuous on [a, b]. The pointwise limit of
(hn) is h almost by definition since f;, — g at & = y. Since the uniform limit of sequence of
continuous functions is continuous, we just need to show that (h,,) is uniformly Cauchy on [a, b]
since the limit must be A since it converges pointwise to h.

(fn*fm)(w)f

(
hn(l')_hm(x): {(f;z_ r/n)(yy) iE:y.

By the mean value theorem,

(&) — o () = (fn = fm) (zn,m) for some z,, ., between z and y x #y
mO T T e ) W) v=y

sup |hy — hy| < sup|fy, — fr,| =0
[a,b] [a,b]

as n,m — 00. So (hy,) is uniformly Cauchy so we’re done. O



	Uniform Convergence
	Differentation and uniform convergence


